- Azure Databricks documentation | Microsoft Docs
- Ten Simple Databricks Notebook Tips & Tricks for Data Scientists – The Databricks Blog
- Secret scopes – Azure Databricks | Microsoft Docs
Databricks on AWS
- Databricks documentation | Databricks on AWS
- Runs CLI | Databricks on AWS
- Databricks File System (DBFS) | Databricks on AWS
- Databricks for SQL developers | Databricks on AWS
- Databricks SQL | Databricks on AWS
- Databricks ODBC and JDBC drivers | Databricks on AWS
- Authentication using Databricks personal access tokens | Databricks on AWS
- Developer tools and guidance | Databricks on AWS
- DBeaver integration with Databricks | Databricks on AWS
- Databricks Utilities | Databricks on AWS
- Secrets | Databricks on AWS
- Databricks SQL Connector for Python | Databricks on AWS
- Databricks for Python developers | Databricks on AWS
DROP DATABASE
While usage of SCHEMA
and DATABASE
is interchangeable, SCHEMA
is preferred.
DROP VIEW (Databricks SQL)
DROP VIEW [ IF EXISTS ] view_name
Related articles
Other
ดูเวอร์ชันของ Databricks Runtime
%scala dbutils.notebook.getContext.tags("sparkVersion") // res1: String = 10.4.x-scala2.12
%python spark.conf.get("spark.databricks.clusterUsageTags.sparkVersion") # '10.4.x-scala2.12'