Python ECDSA and ECDH

This is an easy-to-use implementation of ECC (Elliptic Curve Cryptography) with support for ECDSA (Elliptic Curve Digital Signature Algorithm), EdDSA (Edwards-curve Digital Signature Algorithm) and ECDH (Elliptic Curve Diffie-Hellman), implemented purely in Python, released under the MIT license. With this library, you can quickly create key pairs (signing key and verifying key), sign messages, and verify the signatures. You can also agree on a shared secret key based on exchanged public keys. The keys and signatures are very short, making them easy to handle and incorporate into other protocols.

NOTE: This library should not be used in production settings, see Security for more details.

Installation

pip install ecdsa

Usage

You start by creating a SigningKey. You can use this to sign data, by passing in data as a byte string and getting back the signature (also a byte string). You can also ask a SigningKey to give you the corresponding VerifyingKey. The VerifyingKey can be used to verify a signature, by passing it both the data string and the signature byte string: it either returns True or raises BadSignatureError.

from ecdsa import SigningKey
sk = SigningKey.generate() # uses NIST192p
vk = sk.verifying_key
signature = sk.sign(b"message")
assert vk.verify(signature, b"message")
from ecdsa import SigningKey
sk = SigningKey.generate()  # uses NIST192p
vk = sk.verifying_key
bytes_text = bytes("The first sample string|The second sample string", 'utf-8')
signature = sk.sign(bytes_text)
assert vk.verify(signature, bytes_text)

Each SigningKey/VerifyingKey is associated with a specific curve, like NIST192p (the default one). Longer curves are more secure, but take longer to use, and result in longer keys and signatures.

from ecdsa import SigningKey, NIST384p
sk = SigningKey.generate(curve=NIST384p)
vk = sk.verifying_key
signature = sk.sign(b"message")
assert vk.verify(signature, b"message")

The SigningKey can be serialized into several different formats: the shortest is to call s=sk.to_string(), and then re-create it with SigningKey.from_string(s, curve) . This short form does not record the curve, so you must be sure to pass to from_string() the same curve you used for the original key. The short form of a NIST192p-based signing key is just 24 bytes long. If a point encoding is invalid or it does not lie on the specified curve, from_string() will raise MalformedPointError.

from ecdsa import SigningKey, NIST384p
sk = SigningKey.generate(curve=NIST384p)
sk_string = sk.to_string()
sk2 = SigningKey.from_string(sk_string, curve=NIST384p)
print(sk_string.hex())
print(sk2.to_string().hex())
from ecdsa import SigningKey, NIST256p
sk = SigningKey.generate(curve=NIST256p)
vk = sk.verifying_key
signature = sk.sign(b"message")
assert vk.verify(signature, b"message")
print("OK")

sk_string = sk.to_string()
sk_hex = sk_string.hex()
print(sk_hex)

sig_hex = signature.hex()
print(sig_hex)

Note: while the methods are called to_string() the type they return is actually bytes, the “string” part is leftover from Python 2.

sk.to_pem() and sk.to_der() will serialize the signing key into the same formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored "-----BEGIN EC PRIVATE KEY-----" base64-encoded format, and the DER format is a shorter binary form of the same data. SigningKey.from_pem()/.from_der() will undo this serialization. These formats include the curve name, so you do not need to pass in a curve identifier to the deserializer. In case the file is malformed from_der() and from_pem() will raise UnexpectedDER or MalformedPointError.

from ecdsa import SigningKey, NIST384p
sk = SigningKey.generate(curve=NIST384p)
sk_pem = sk.to_pem()
sk2 = SigningKey.from_pem(sk_pem)
# sk and sk2 are the same key

Likewise, the VerifyingKey can be serialized in the same way: vk.to_string()/VerifyingKey.from_string()to_pem()/from_pem(), and to_der()/from_der(). The same curve= argument is needed for VerifyingKey.from_string().

from ecdsa import SigningKey, VerifyingKey, NIST384p
sk = SigningKey.generate(curve=NIST384p)
vk = sk.verifying_key
vk_string = vk.to_string()
vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p)
# vk and vk2 are the same key

from ecdsa import SigningKey, VerifyingKey, NIST384p
sk = SigningKey.generate(curve=NIST384p)
vk = sk.verifying_key
vk_pem = vk.to_pem()
vk2 = VerifyingKey.from_pem(vk_pem)
# vk and vk2 are the same key

There are a couple of different ways to compute a signature. Fundamentally, ECDSA takes a number that represents the data being signed, and returns a pair of numbers that represent the signature. The hashfunc= argument to sk.sign() and vk.verify() is used to turn an arbitrary string into a fixed-length digest, which is then turned into a number that ECDSA can sign, and both sign and verify must use the same approach. The default value is hashlib.sha1, but if you use NIST256p or a longer curve, you can use hashlib.sha256 instead.